skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tziperman, Eli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In spite of the mean warming trend over the last few decades and its amplification in the Arctic, some studies have found no robust decline or even a slight increase in wintertime cold air outbreaks over North America. But fossil evidence from warmer paleoclimate periods indicates that the interior of North America never dropped below freezing even in the depths of winter, which implies that the maintenance of cold air outbreaks is unlikely to continue indefinitely with future warming. To identify key mechanisms affecting cold air outbreaks and understand how and why they will change in a warmer climate, we examine the development of North American cold air outbreaks in both a preindustrial and a roughly 8×CO2scenario using the Community Earth System Model, version 2 (CESM2). We observe a sharp drop-off in the wintertime temperature distribution at the freezing temperature, suppressing below-freezing conditions in the warmer climate and above-freezing conditions in the preindustrial case. The disappearance of Arctic sea ice and loss of the near-surface temperature inversion dramatically decrease the availability of below-freezing air in source regions. Using an air parcel trajectory analysis, we demonstrate a remarkable similarity in both the dynamics and diabatic effects acting on cold air masses in the two climate scenarios. Diabatic temperature evolution along cold air outbreak trajectories is a competition between cooling from longwave radiation and warming from boundary layer mixing. Surprisingly, while both diabatic effects strengthen in the warmer climate, the balance remains the same, with a net cooling of about −6 K over 10 days. Significance StatementWe compare a preindustrial climate scenario to a much warmer climate circa the year 2300 under high emissions to understand the physical processes that influence the coldest wintertime temperatures and how they will change with warming. We find that enhanced warming in the Arctic, and particularly over the Arctic Ocean due to the loss of wintertime sea ice, dramatically reduces the availability of cold air to be swept into North America. By tracing these cold air masses as they travel, we also find that they experience the same total amount of cooling in the much warmer climate as they did in the preindustrial climate even though many of the individual heating and cooling processes have gotten stronger. 
    more » « less
  2. Abstract Stratocumulus clouds cover about a fifth of Earth’s surface, and due to their albedo and low-latitude location, they have a strong effect on Earth’s radiation budget. Previous studies using large-eddy simulations have shown that multiple equilibria (both stratocumulus-covered and cloud-free/scattered cumulus states) exist as a function of fixed SST, with relevance to equatorward advected air masses. Multiple equilibria have also been found as a function of atmospheric CO 2 , with a subtropical SST nearly 10 K higher in the cloud-free state and with suggested relevance to warm climate dynamics. In this study, we use a mixed-layer model with an added surface energy balance and the ability to simulate both the stratocumulus (coupled) and cloud-free/scattered cumulus (decoupled) states using a “stacked” mixed-layer approach to study both types of multiple equilibria and the corresponding hysteresis. The model’s simplicity and computational efficiency allow us to qualitatively explore the mechanisms critical to the stratocumulus cloud instability and hysteresis as well as isolate key processes that allow for multiple equilibria via mechanism-denial experiments not possible with a full-complexity model. For the hysteresis in fixed SST, we find that decoupling can occur due to either enhanced entrainment warming or a reduction in cloud-top longwave cooling. The critical SST at which decoupling occurs is highly sensitive to precipitation and entrainment parameterizations. In the CO 2 hysteresis, decoupling occurs in the simple model used even without the inclusion of SST–cloud cover feedbacks, and the width of the hysteresis displays the same sensitivities as the fixed SST case. Overall, the simple model analysis and results motivate further studies using higher complexity models. 
    more » « less
  3. Abstract. Abrupt and irreversible winter Arctic sea ice loss may occur under anthropogenic warming due to the disappearance of a sea ice equilibrium at athreshold value of CO2, commonly referred to as a tipping point. Previous work has been unable to conclusively identify whether a tippingpoint in winter Arctic sea ice exists because fully coupled climate models are too computationally expensive to run to equilibrium for manyCO2 values. Here, we explore the deviation of sea ice from its equilibrium state under realistic rates of CO2 increase todemonstrate for the first time how a few time-dependent CO2 experiments can be used to predict the existence and timing of sea ice tippingpoints without running the model to steady state. This study highlights the inefficacy of using a single experiment with slow-changing CO2to discover changes in the sea ice steady state and provides a novel alternate method that can be developed for the identification of tippingpoints in realistic climate models. 
    more » « less
  4. Abstract Glacial‐interglacial oscillations exhibit a periodicity of approximately 100 Kyr during the late Pleistocene. Insolation variations are understood to play a vital role in these ice ages, yet their exact effect is still unknown; the 100 Kyr ice ages may be explained in two different ways. They could be purely insolation‐driven, such that ice ages are a consequence of insolation variations and would not have existed without these variations. Or, ice ages may be self‐sustained oscillations, where they would have existed even without insolation variations. We develop several observable measures that are used to differentiate between the two scenarios and can help to determine which one is more likely based on the observed proxy record. We demonstrate these analyses using two representative models. First, we find that the self‐sustained model best fits the ice volume proxy record for the full 800‐Kyr time period. Next, the same model also shows a 100 Kyr peak consistent with observations, yet the insolation‐driven model exhibits a dominant 400 Kyr spectral peak inconsistent with observations. Our third measure indicates that midpoints in ice volume during terminations do not always occur during the same phase of insolation in both observations and the self‐sustained scenario, whereas they do in the insolation‐driven scenario. While some of these results suggest that the self‐sustained ice ages are more consistent with the observed record, they rely on simple representations of the two scenarios. To draw robust conclusions, a broader class of models should be tested using this method of producing observable differences. 
    more » « less
  5. Abstract The middepth ocean temperature profile was found by Munk in 1966 to agree with an exponential profile and shown to be consistent with a vertical advective–diffusive balance. However, tracer release experiments show that vertical diffusivity in the middepth ocean is an order of magnitude too small to explain the observed 1-km exponential scale. Alternative mechanisms suggested that nearly all middepth water upwells adiabatically in the Southern Ocean (SO). In this picture, SO eddies and wind set SO isopycnal slopes and therefore determine a nonvanishing middepth interior stratification even in the adiabatic limit. The effect of SO eddies on SO isopycnal slopes can be understood via either a marginal criticality condition or a near-vanishing SO residual deep overturning condition in the adiabatic limit. We examine the interplay between SO dynamics and interior mixing in setting the exponential profiles of σ 2 and ∂ z σ 2 . We use eddy-permitting numerical simulations, in which we artificially change the diapycnal mixing only away from the SO. We find that SO isopycnal slopes change in response to changes in the interior diapycnal mixing even when the wind forcing is constant, consistent with previous studies (that did not address these near-exponential profiles). However, in the limit of small interior mixing, the interior ∂ z σ 2 profile is not exponential, suggesting that SO processes alone, in an adiabatic limit, do not lead to the observed near-exponential structures of such profiles. The results suggest that while SO wind and eddies contribute to the nonvanishing middepth interior stratification, the exponential shape of the ∂ z σ 2 profiles must also involve interior diapycnal mixing. 
    more » « less
  6. Abstract Coastal upwelling, driven by alongshore winds and characterized by cold sea surface temperatures and high upper-ocean nutrient content, is an important physical process sustaining some of the oceans’ most productive ecosystems. To fully understand the ocean properties in eastern boundary upwelling systems, it is important to consider the depth of the source waters being upwelled, as it affects both the SST and the transport of nutrients toward the surface. Here, we construct an upwelling source depth distribution for parcels at the surface in the upwelling zone. We do so using passive tracers forced at the domain boundary for every model depth level to quantify their contributions to the upwelled waters. We test the dependence of this distribution on the strength of the wind stress and stratification using high-resolution regional ocean simulations of an idealized coastal upwelling system. We also present an efficient method for estimating the mean upwelling source depth. Furthermore, we show that the standard deviation of the upwelling source depth distribution increases with increasing wind stress and decreases with increasing stratification. These results can be applied to better understand and predict how coastal upwelling sites and their surface properties have and will change in past and future climates. 
    more » « less
  7. Abstract Westerly wind bursts (WWBs) are anomalous surface wind gusts that play an important role in ENSO dynamics. Previous studies have identified several mechanisms that may be involved in the dynamics of WWBs. In particular, many have examined the importance of atmospheric deep convection to WWBs, including convection due to tropical cyclones, equatorial waves, and the Madden Julian Oscillation. Still, the WWB mechanism is not yet fully understood. In this study, we investigate the location of atmospheric convection which leads to WWBs and the role of positive feedbacks involving surface evaporation. We find that disabling surface flux feedbacks a few days before a WWB peaks does not weaken the event, arguing against local surface flux feedbacks serving as a WWB growth mechanism on individual events. On the other hand, directly suppressing convection by inhibiting latent heat release or eliminating surface evaporation rapidly weakens a WWB. By selectively suppressing convection near or further away from the equator, we find that convection related to off-equatorial cyclonic vortices is most important to equatorial WWB winds, while on-equator convection is unimportant. Despite strong resemblance of WWB wind patterns to the Gill response to equatorial heating, our findings indicate that equatorial convection is not necessary for WWBs to develop. Our conclusions are consistent with the idea that tropical cyclones, generally occurring more than 5° away from the equator, may be responsible for the majority of WWBs. 
    more » « less
  8. null (Ed.)
    Abstract Winter Arctic sea ice loss has been simulated with varying degrees of abruptness across global climate models (GCMs) run in phase 5 of the Coupled Model Intercomparison Project (CMIP5) under the high-emissions extended RCP8.5 scenario. Previous studies have proposed various mechanisms to explain modeled abrupt winter sea ice loss, such as the existence of a wintertime convective cloud feedback or the role of the freezing point as a natural threshold, but none have sought to explain the variability of the abruptness of winter sea ice loss across GCMs. Here we propose a year-to-year local positive feedback cycle in which warm, open oceans at the start of winter allow for the moistening and warming of the lower atmosphere, which in turn increases the downward clear-sky longwave radiation at the surface and suppresses ocean freezing. This situation leads to delayed and diminished winter sea ice growth and allows for increased shortwave absorption from lowered surface albedo during springtime. Last, the ocean stores this additional heat throughout the summer and autumn seasons, setting up even warmer ocean conditions that lead to further sea ice reduction. We show that the strength of this feedback, as measured by the partial temperature contributions of the different surface heat fluxes, correlates strongly with the abruptness of winter sea ice loss across models. Thus, we suggest that this feedback mechanism may explain intermodel spread in the abruptness of winter sea ice loss. In models in which the feedback mechanism is strong, this may indicate the possibility of hysteresis and thus irreversibility of sea ice loss. 
    more » « less